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COMPARING RELATIVE REACHABLE SETS ABOUT NEARLY
CIRCULAR ORBITS

Jackson Kulik*, Maxwell Zweig †, and Dmitry Savransky ‡

The relative reachable set problem considers the set of positions or states that
are reachable at a given time under constraints on control authority. Some for-
mulations of constraints on control authority lead to more analytically tractable
computations of the reachable sets while others correspond more exactly to the
constraints present in real-world spacecraft operations. We will compare different
formulations of the relative reachable set problem and analyze the approximation
quality of an impulsive reachable set as a stand-in for a constant-thrust reachable
set and an energy-limited reachable set as a proxy for a thrust-limited reachable
set.

INTRODUCTION

The relative reachable set problem examines the set of positions or combined position and ve-
locity states relative to an uncontrolled trajectory that are accessible to a satellite at a given instant
or interval in time. The relative reachable set problem is often characterized by smaller control au-
thorities, time spans, and size of the reachable set than when considering absolute/inertial reachable
sets. As such, using a linear approximation of the dynamics about the uncontrolled trajectory is typ-
ically appropriate. The relative reachable set problem lends itself well to the study of rendezvous
and formation flight,1 collision risk analysis,2 as well as differential games.3 In this work, we will
not consider the envelope of a reachable set over an interval of time, but instead the reachable set at
a given instant in time.

There are two main variants of the relative reachable set problem in terms of the formulation
of the constraint on the control authority. The first variant considers the effects of a single, high-
thrust maneuver approximated as an impulsive change in velocity or ∆v.1, 2 In this work, we will
expand upon the study of reachable sets under high-thrusts by considering the reachable set of a
constant-thrust maneuver over a finite time period. This is a reasonable model for the execution of a
variety of controls implemented in the formation flying and rendezvous setting, because trajectory
optimization under the assumption of finite-time constant-thrust burns is of similar computational
difficulty to optimization with impulsive burns while yielding more realistically implementable ma-
neuvers.4, 5 Both of these formulations lead to ellipsoidal reachable sets, and obtaining the position
only or full state reachable set is a simple computation. We will compare these reachable sets as the
limit on the acceleration is changed or equivalently as the duration of the constant-thrust maneuver
is varied. The other class of approaches to formulating the relative reachable set problem applies to
the low-thrust setting in which neither of the two previous approaches work as an accurate model
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for maneuvers. The most analytically tractable low-thrust reachable set is the energy-limited reach-
able set, which is characterized by limiting the integral of the squared 2-norm of the acceleration
from the spacecraft between some initial time and the time at which the reachable set is consid-
ered. Closed-form solutions for this energy-limited reachable set can be calculated as ellipsoids
corresponding to some quadratic form.6, 7 More realistic constraints for low-thrust spacecraft are
the thrust-limited3, 8 and additionally fuel-limited cases.9, 10 However, these higher-fidelity formula-
tions of the low-thrust relative reachable set problem do not lead to reachable sets with ellipsoidal or
other simple geometries. We will compare the analytically tractable, energy-limited, reachable set
with the more realistic, thrust-limited, reachable set to understand in what ways the energy-limited
reachable set succeeds or fails to approximate the thrust-limited reachable set.

Linear Approximation of the Dynamics

Given an autonomous dynamical system in Rn, the state vector x ∈ Rn evolves according to the
system of ordinary differential equations

d

dt
x = F(x), x(0) = x0 (1)

The flow map associated with the dynamical system in Eq. 1 is defined such that

d

dt
φt(x0) = F(φt(x0)), φ0(x0) = x0 (2)

The Jacobian of the flow map is the state transition matrix (STM) Φ(tf , t0) associated with a given
flow starting at the reference state x0 from time t0 to time tf . Taking the first-order partial derivative
of Eq. 2, exchanging the order of temporal and spatial derivatives (assuming F has continuous
spatial derivatives) and applying the chain rule yields the n2 first-order variational equations

dΦ(tf , t0)

dtf
=

∂F(x)

∂x
Φ(tf , t0), Φ(t0, t0) = In (3)

where In is the n dimensional identity matrix.

The state transition matrix Φ(tf , t0) associated with an uncontrolled reference trajectory with
three-dimensional position r and velocity v between time t0 and time tf gives a linear approxima-
tion of how initial perturbations to the state δx0 = [δrT0 , δv

T
0 ]

T evolve into perturbations in the final
state of the trajectory δxf = [δrTf , δv

T
f ]

T .

δxf ≈ Φ(tf , t0)δx0 (4)

The Clohessy-Wiltshire equations11 and Tschauner-Hempel equations/Yamanaka-Ankersen12 state
transition matrix give analytical forms for the STM in the rotating radial, in-track, cross-track frame
(RIC) under the assumptions of two-body dynamics with circular and elliptical reference orbits,
respectively. Under other assumptions for which the STM cannot be calculated analytically, it
can be computed by numerically integrating the first-order variational equations associated with
the dynamical system and reference trajectory from Eq. 3. In this work, the analytical techniques
presented are valid for any dynamical system and associated STM. However, all examples will
pertain directly to the Earth Centered Inertial (ECI) frame or RIC frame STM associated with a
circular reference orbit in the two-body problem. The specifics of this STM are described below.
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The position vector δr is written in radial, in-track, and cross-track coordinates as

δr = δxr̂+ δyŝ+ δzŵ (5)

where r̂ is defined as the direction from Earth center to reference orbit, ŵ is in the direction of
the specific angular momentum of the reference orbit, and ŝ = ŵ × r̂ completes the right-handed
system. In the case of a circular reference orbit, ŝ corresponds to the direction of the velocity
vector of the reference satellite. The RIC STM for circular orbits given by the Clohessy-Wiltshire
equations is

δxRIC =
[
δx, δy, δz, δẋ, δẏ, δż

]
(6)

δxRIC
f = ΦRIC(tf , t0)δx

RIC
0 (7)

ΦRIC(tf , t0) =



4− 3c 0 0 s/n 2/n− 2c/n 0
−6n∆t+ 6s 1 0 −2/n+ 2c/n 4s/n− 3∆t 0

0 0 c 0 0 s/n
3ns 0 0 c 2s 0

−6n+ 6nc 0 0 −2s −3 + 4c 0
0 0 −ns 0 0 c

 (8)

ΦRIC(tf , t0) =

[
Φr

r Φr
v

Φr
v Φv

v

]
(9)

where s = sin(n∆t), c = cos(n∆t), and n is the mean motion of the reference orbit with units
consistent with the spatial units from x and temporal units from t. Each block of Φ(tf , t0) is a three
by three matrix giving the sensitivity of the final state of the superscript variable listed (relative
position or velocity), with respect to the initial state of the subscript variable listed. Note in the
following sections that equations involving vectors and STMs will be assumed to use a consistent
frame (RIC or ECI) within the equation unless otherwise explicitly listed. The ECI frame STM can
be constructed by applying the linear transformation between ECI and RIC on either side of the RIC
frame STM.13 Let MRIC

ECI(t) and MECI
RIC(t) denote the transformations from ECI to RIC and RIC to

ECI, respectively, where the RIC frame is defined around the reference satellite at the epoch t. Then

ΦECI(tf , t0) = MECI
RIC(tf )Φ

RIC(tf , t0)M
RIC
ECI(t0) (10)

The effect of a constant-thrust maneuver on a satellite can be characterized by solving the inho-
mogeneous system of differential equations associated with thrusted relative motion around some
reference orbit.4, 5 We denote the input transition matrix (ITM)14 by Γ(t1, t0), where the ITM is a
6×3 matrix giving the sensitivity of the state at time t1 to the constant acceleration a over the entire
time interval between t0 and t1:

Γ(t1, t0) =

∫ t1

t0

Φv(t1, τ)dτ (11)

The effects on the state δxf after a burn-coast maneuver can be obtained by multiplying the STM
after the burn concludes and the ITM over the course of the burn with acceleration vector a

δxf ≈ Φ(tf , t1)Γ(t1, t0)a (12)

The effects on position alone δrf , are given by taking the upper three by six partition of the STM
Φr(tf , t1):

δrf ≈ Φr(tf , t1)Γ(t1, t0)a (13)
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When the acceleration a is fixed in the reference satellite RIC frame or ECI frame, then Eqs.
11-13 describe the effect on the satellite state in the same frame.

In the RIC frame with a circular reference orbit, the ITM is given by

ΓRIC
RIC(∆t) =



1−c
n2

2n∆t−2s
n2 0

2(s−n∆t)
n2

4−4c
n2 − 3∆t2

2 0

0 0 1−c
n2

s
n

2−2c
n 0

2(c−1)
n

4s
n − 3∆t 0

0 0 s
n


(14)

The effect on position at time tf in the RIC frame from a centered RIC fixed burn–one that is fixed
in the RIC frame over the time interval starting at t0 − ∆t

2 and ending at t0 + ∆t
2 –is given by the

matrix

Φr
RIC

(
tf , t0 +

∆t

2

)
ΓRIC

RIC

(
t0 +

∆t

2
, t0 −

∆t

2

)
=


2s2sf
n2

2n∆t−4s2cf
n2 0

4s2cf−2n∆t

n2

8s2sf
n2 − 3∆t(tf − t0) 0

0 0
2s2sf
n2


(15)

where sf = sin(n(tf − t0)), cf = cos(n(tf − t0)), s2 = sin
(
n∆t
2

)
, and c2 = cos

(
n∆t
2

)
.

We also consider the effect of a constant acceleration fixed in the ECI frame on the RIC state of
the vehicle. Here, we will formulate the effects of a burn that is specified at a given epoch in the RIC
frame but will be executed as a fixed burn in the ECI frame such that the burn has the specified RIC
frame acceleration at the designated epoch. Let RECI

RIC(t) denote the rotation transformation from
three dimensional position or control acceleration vectors in the RIC frame to the ECI frame.

ΓRIC
ECI,+(t1, t0) =

∫ t1

t0

ΦRIC
v (t1, τ)R

RIC
ECI(τ)R

ECI
RIC(t0)dτ (16)

=

∫ t1

t0

ΦRIC
v (t1, τ)Qĉ(−n(τ − t0))dτ (17)

where

Qĉ(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (18)

For a circular reference orbit, the ITM given an ECI fixed burn specified in the RIC frame at the
initial epoch is given by

ΓRIC
ECI,+(∆t) =



3n∆ts+4c−4
2n2 −3(n∆tc−s)

2n2 0
3(n∆t−2s+n∆tc)

n2
3n∆ts+5c−5

n2 0

0 0 1−c
n2

3
2∆tc− s

2n
3
2∆ts 0

−3(n∆ts+c−1)
n 3∆tc− 2s

n 0

0 0 s
n


(19)
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In order to understand the effects of a constant-thrust burn specified based on a RIC thrust vector at
the center of the burn we form the following ITM

ΓRIC
ECI,*(t1, t0) =

∫ t1

t0

ΦRIC
v (t1, τ)R

RIC
ECI(τ)R

ECI
RIC((t1 − t0)/2)dτ (20)

=

∫ t1

t0

ΦRIC
v (t1, τ)Qĉ(−n(τ − (t1 − t0)/2))dτ (21)

For a circular reference orbit, the ITM given an ECI fixed burn specified in the RIC frame at the
halfway point epoch is given by

ΓRIC
ECI,*(∆t) =



− s2(s−3n∆t)
2n2

8s2−(3n∆t+s)c2
2n2 0

−21s2+sin( 3n∆t
2 )−12n∆tc2
2n2

s2s
n2 0

0 0 1−c
n2

− (s−3n∆t)c2
2n

s2(3n∆t+s)
2n 0

s2(s−3n∆t)
n

−11s2+sin( 3n∆t
2 )+6n∆tc2

2n 0

0 0 s
n


(22)

The effect on position at time tf in the RIC frame from a centered ECI fixed burn starting at t0− ∆t
2

and ending at t0 + ∆t
2 is given by the matrix

Φr
RIC

(
tf , t0 +

∆t

2

)
ΓRIC

ECI,*

(
t0 +

∆t

2
, t0 −

∆t

2

)
=

 − (s−3∆tn)sf
2n2

8s2−(3∆tn+s)cf
2n2 0

−(s−3∆tn)cf−10s2+3∆tnc2
n2

(3∆tn+s)sf−6n(tf−t0)s2
n2 0

0 0
2s2sf
n2


(23)

COMPARING IMPULSIVE AND CONSTANT-THRUST REACHABLE SETS

Using the state transition matrix, the position reachable set at time tf resulting from an impulse
at time t0 is given by the set of relative position vectors δrf at time tf , which satisfy the constraint∥∥∥(Φr

v(tf , t0))
−1 δrf

∥∥∥
2
≤ ∆vmax (24)

where Φr
v(tf , t0) denotes the upper right block of the state transition matrix, which gives the sensi-

tivity of the final position to initial velocity and ∆vmax represents the maximum allowable control
authority as an impulse at t0. The above expression is valid when the matrix Φr

v(tf , t0) is nonsin-
gular which is true except at multiples of half periods (e.g. 1/2, 1, 3/2... periods) and solutions of
a transcendental equation once per orbit (e.g. around 1.4, 2.4... periods). Otherwise, the linearized
approximation of the reachable set collapses down to one (at full periods) or two dimensions rather
than three dimensions.15–17 The singular value decomposition may be employed to analyze the ge-
ometry of the resulting reachable set. The left singular vectors ui multiplied by the singular values
σi and the maximum delta-v, ∆vmax, give the semi-axes of the ellipsoid, and the right singular vec-
tors vi scaled by ∆vmax give the controls which give rise to the semi-axes of the reachable set. This
is the principle underlying the maximal stretching, Cauchy-Green strain tensor, or local Lyapunov
exponent method for designing and understanding stationkeeping maneuvers.18–20 Note that the
frame of the STM is not specified in Eq. 24. The impulsive reachable set in ECI coordinates can be
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obtained from the reachable set in RIC coordinates by applying the linear transformation MECI
RIC(tf )

to every vector in the impulsive RIC reachable set. On the other hand, the relationship between the
reachable set from a thrust that is constant in the RIC frame versus a thrust that is constant in the ECI
frame is less simple. However, the singular value decomposition of the matrix Φr(tf , t1)Γ(t1, t0)
gives the semi-axes of the ellipsoidal reachable set associated with a constant-thrust burn and coast
maneuver in just the same way as for the impulsive reachable set.

In order to compare the impulsive and constant-thrust reachable sets for the same values of t0 and
tf , but with varying values of the thrusting cutoff time t1, we can leverage the analytical formulation
of both reachable sets. In particular, we can try to understand the ratio of the distance from the origin
to the two reachable sets along a given direction δr̂f . First, note that the magnitude of the impulsive
reachable set along δr̂f is given by

∥r(I)f ∥2 =
∆vmax∥∥∥(Φr

v(tf , t0))
−1 δr̂f

∥∥∥
2

(25)

Next, the magnitude of the constant-thrust reachable set along r̂f is given by

∥δr(C)
f ∥2 =

umax∥∥∥(Φr(tf , t1)Γ(t1, t0))
−1 δr̂f

∥∥∥
2

(26)

where umax is the maximum possible acceleration of the constant-thrust. The square of the ratio of
the constant-thrust reachable set to the impulsive reachable set is given as a generalized Rayleigh
quotient

ρ2(r̂f ; t0, t1, tf ) =
∆v2max

u2max

δr̂Tf (Φr(tf , t1)Γ(t1, t0))
−T (Φr(tf , t1)Γ(t1, t0))

−1 δr̂f

δr̂Tf (Φr
v(tf , t0))

−T (Φr
v(tf , t0))

−1 δr̂f
(27)

The method of Lagrange multipliers shows that ρ2(δr̂f ; t0, t1, tf ) and thus ρ(δr̂f ; t0, t1, tf ) has con-
strained stationary points (under the unit ball constraint for δr̂f ) that are solutions of the generalized
eigenvalue problem

(Φr(tf , t1)Γ(t1, t0))
−T (Φr(tf , t1)Γ(t1, t0))

−1 y = γ (Φr
v(tf , t0))

−T (Φr
v(tf , t0))

−1 y (28)

where the eigenvalues γi and eigenvectors yi are denoted as such to avoid confusion with costates
and velocities. Given that the above matrix pencil (pair of matrices considered in a generalized
eigenvalue problem) is symmetric positive semi-definite in both matrices, the generalized eigenvalue
problem can be solved using a Hermitian solver and the eigenpairs (γi,yi), while not necessarily
orthogonal, are guaranteed to be real and the eigenvalues are guaranteed positive.21 The directions
at which the extrema of the ratios of the two reachable sets take place and the values of that ratio
are given by the eigenvectors and the evaluation of ρ(δr̂f ; t0, t1, tf ) at that eigenvector.

For ease of presentation and because of the simple oscillatory behavior of out-of-plane motion,
we present analysis for the in-plane relative reachable sets associated with circular reference orbits.
When comparing between the impulsive reachable set and a comparable constant-thrust reachable
set satisfying ∆vmax = umax∆t, one might expect the impulsive control to be more efficient and to
always lead to a larger reachable set than a comparable constant-thrust reachable set. However, the
boundaries of the reachable sets often intersect and the ratio ρ(δr̂f ; t0, t1, tf ) takes on values below
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and above unity. In Fig. 1, impulsive and constant-thrust reachable sets–constant in the RIC or
ECI frame, and either beginning at the impulse epoch or centered at the impulse epoch–are plotted
for a nondimensional circular orbit with mean motion set to unity n = 1, control magnitude of
unity ∆vmax = 1, and constant-thrust time of 0.25 periods (a potentially unrealistically long time
period to emphasize differences in the reachable sets that would be difficult to see at lower thrust
durations). For any other circular orbit of a different size or control magnitude, the reachable sets
will be of the same shape and relative size. The impulsive reachable set is nearly 1-dimensional
for the 1.4 revolution case which is a well-known consequence of the singularity of the upper right
block of the state transition matrix around that time-of-flight.17 It can be seen that the RIC frame
centered constant-thrust reachable set is closest to the impulsive reachable set, with the centered ECI
frame constant-thrust set, RIC frame uncentered constant-thrust set, and the ECI frame uncentered
constant-thrust set increasingly less similar to the impulsive reachable set. These two time-of-flights
demonstrate that there is no consistent trend describing in which direction the reachable set is larger–
sometimes the radial extent is larger and in other cases the reachable set may be smaller in both
in-track and radial extent, but cover regions in space that the impulsive set does not. In Fig. 2, we

Figure 1: Unitless RRS for impulsive and constant-thrust controls. Time of flight is 1.4 periods on
the left and 1.8 periods on the right.

plot the largest and smallest singular value/semi-axis length associated with the in-plane reachable
sets of a circular reference orbit and impulsive or constant-thrust reachable sets using a thrust time
of 0.05 periods (around 5 minutes for a LEO orbit). A linear trend with a sinusoidal forcing is
clear in the larger singular value for all the reachable sets. On the other hand, the smaller singular
value does not exhibit secular growth and goes to zero at the in-plane singular transfer times–at
full periods and near 1.4 periods for the impulsive case, and near these values for the constant
thrust cases. To emphasize the differences in the sizes of these reachable sets we plot the difference
between the largest singular value associated with the constant-thrust reachable set and the largest
singular value associated with the impulsive reachable set in Fig. 3. Additionally, the difference
between the smallest singular values associated with the minimum distance of the constant-thrust
and impulsive reachable sets is shown in Fig.3. The minimum singular values are almost the same
visibly for the centered ECI and centered RIC constant-thrust maneuvers, as well as for the forward
ECI and forward RIC maneuvers. One can see that the constant thrust maneuvers that are not
centered at the impulsive maneuver epoch tend to have varying reachable set sizes. Sometimes the
minimum extent of the forward constant-thrust reachable sets is larger than the smallest extent of the
impulsive reachable set, and sometimes it is larger. On the other hand, the centered constant-thrust
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Figure 2: Singular values associated with in-plane minimum and maximum reachable set distances.

Figure 3: Difference between smallest (left) and largest (right) singular value for constant-thrust
RRS vs impulsive RRS.

8



maneuvers have a slightly larger minimum extent than the impulsive reachable set except for a short
period of time following the maneuver. When examining the maximum extent of the reachable sets,
it is evident that the centered RIC constant-thrust reachable set has the most similar extent as the
impulsive reachable set. On the other hand, the centered ECI constant-thrust reachable set tends to
have a smaller maximum extent as compared with the impulsive reachable set. This difference in the
maximum extent of the two reachable sets grows over time. So far, we have compared individually
the extent of the reachable sets, but have not compared them along the same directions. For example,
the maximum extent of one reachable set may be in a very different direction than another reachable
set with a similar maximum extent.

In Fig. 4, the minimum and maximum ratios between the impulsive reachable set and various
constant-thrust reachable sets are displayed. Near singular transfer times at 1, 2, and around 1.4
revolutions, the ratios limit to infinity and zero for each of the reachable sets. The uncentered
constant-thrust reachable sets exhibit generally higher maximum ratios relative to the impulsive
reachable set and lower minimum ratios when compared to the centered constant-thrust burns. This
indicates that generally these constant-thrust reachable sets where the thrust begins at the impulse
epoch are more distinct from the corresponding impulsive reachable set as compared with a cen-
tered constant-thrust maneuver reachable set. For short time-of-flight, the forward constant-thrust
reachable sets are a subset of the impulsive reachable set, while they are generally neither a su-
perset nor a subset (having some overlap) after around a quarter of a revolution in the case of this
0.05 period thrust time. The behavior of the centered constant-thrust reachable sets is examined
more closely in Fig. 5. We see that the maximum and minimum ratios of the ECI fixed centered
constant-thrust reachable set are nearly constant regardless of the time-of-flight (except near the
singular transfer times where the ratios blow up or go to zero) for a relatively small thrust-time like
is shown in this example. On the other hand, there is more variation in the ratios of the RIC fixed
centered constant-thrust reachable set. The RIC reachable set generally has a minimum ratio relative
to the impulsive reachable set that is smaller than the minimum ratio for the impulsive reachable set
(though they are quite similar far away from the singular transfer times). However, the maximum
ratio of the RIC centered constant-thrust reachable set it generally smaller than the ECI centered
constant-thrust reachable set. This indicates that the impulsive and RIC centered constant-thrust
reachable sets are generally more similar than the ECI centered constant-thrust reachable set and
the impulsive reachable set. Except for a small period of time near three quarters of a period where
the RIC centered constant-thrust reachable set is a subset of the impulsive reachable set, neither
centered constant-thrust reachable strictly contains or is contained by the impulsive reachable set.

One implication of this study is that a RIC centered constant-thrust maneuver is, in some sense,
more similar in its effects to an impulsive maneuver than an ECI centered constant-thrust maneuver.
On the other hand, an ECI centered constant-thrust maneuver may sometimes be more efficient for
reaching a given point than the corresponding RIC centered constant-thrust maneuver to reach that
point, though this will depend on exactly the desired effect to be achieved from the control.

COMPARING THE ENERGY-LIMITED AND THRUST-LIMITED REACHABLE SETS

In describing energy-limited and thrust-limited reachable sets, we must first define the respective
optimal control problems. In both cases, the original dynamics model from Eq. 1 is augmented with
a control acceleration given by the vector u.

dx

dt
= F(x) +

[
0
u

]
(29)
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Figure 4: The minimum and maximum ratios of the in-plane constant-thrust reachable sets with
respect to the impulsive reachable sets.

Figure 5: The minimum and maximum ratios of the in-plane ECI-centered constant-thrust reachable
set with respect to the impulsive reachable sets.

Energy-limited Reachable Set

We begin by describing energy optimal control of a satellite relative to an arbitrary reference
trajectory. The energy cost of some control profile is given by the integral of the squared acceleration

E =

∫ tf

t0

||u||2dt (30)
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Optimal control from one state to another in a proscribed time interval t0 to tf under the proscribed
cost function in Eq. 30 is given by solving a two-point boundary value problem associated with a
system of ordinary differential equations. This approach invokes the Pontryagin Maximal Principle
(PMP) and is also known as indirect optimal control. The differential equations for the indirect
optimal control problem have twice as many dimensions as the state of the original system:

dx

dt
= F(x) +

[
0
u

]
(31)

dλ

dt
= −

(
∂F(x)

∂x

)T

λ (32)

u = −λv (33)

where λv is the velocity costate vector consisting of the last three elements of the costate vector
λ.22 The energy cost E for some optimal control can then be written as an integral in terms of these
velocity costates whose evolution is described by the ordinary differential equations in Eq. 32

E =

∫ tf

t0

λT
vλvdt (34)

Finding an energy optimal trajectory becomes a problem of finding the initial costate vector that
solves the two point boundary value problem associated with reaching the desired terminal state.
The above derivation is independent of any sort of linearization assumption. To solve this prob-
lem generally, numerical solution of the boundary value problem with shooting or collocation is
typically required. However, if the optimal control takes place near some reference trajectory, the
state transition matrix of the augmented system may be used to provide linear approximations to
the initial costate solutions, control vector over time, and a quadratic approximation of the overall
cost. The following derivation of that quadratic energy cost approximation is equivalent to the one
described in Lee et. al.6 Defining the augmented state vector as

y =

[
x
λ

]
=


r
v
λr

λv

 (35)

the state transition matrix associated with the augmented dynamical system from Eqs. 31-33 about a
natural (without control) reference trajectory beginning at state x0 will also be denoted as Φy

y(tf , t0).
This state transition matrix for the augmented system maps perturbations δy0 from a natural refer-
ence trajectory at time t0

y0 = [xT
0 0T ]T (36)

into a linear approximation of the final perturbations to the augmented state at time tf :

δyf ≈ Φy
y(tf , t0)δy0 (37)

where Φy
y(tf , t0) can be partitioned into blocks

Φa
b(tf , t0) =

∂af
∂b0

(38)
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where a,b are any of the vectors comprising the augmented state such as y,x, r,v,λ,λr,λv.
Using the definition of these blocks of the state transition matrix associated with the augmented
system dynamics around a natural reference trajectory, the linearized boundary value problem to
move from the reference orbit at the initial time (δx0 = 0) to some arbitrary close state δxf at the
final time tf is solved by finding the initial costate vector deviation

δλ0 ≈ (Φx
λ(tf , t0))

−1 δxf (39)

Given the zero initial state deviation, the velocity costate at an arbitrary time can be written as

λv(t) ≈ Φλv
λ (t, t0)δλ0 = Φλv

λ (t, t0) (Φ
x
λ(tf , t0))

−1 δxf (40)

Rewriting the energy cost function from Eq. 30, we arrive at a quadratic approximation of the energy
using the linearized dynamics around a natural reference trajectory

E = δxT
f (Φx

λ(tf , t0))
−T

(∫ tf

t0

(
Φλv

λ (t, t0)
)T

Φλv
λ (t, t0)dt

)
(Φx

λ(tf , t0))
−1︸ ︷︷ ︸

E

δxf (41)

The energy-limited reachable set under linearized dynamics is given by the set of final state
perturbations δxf such that the following quadratic form is less than some maximum value

δxT
f Eδxf ≤ Emax (42)

The semi-axes of the energy-limited reachable set in the full six-dimensional state space are given
by

αi =

√
Emax

γi
yi (43)

where (yi, γi) is an eigenpair of the matrix E. While the energy-limited reachable set has been
studied extensively, analytical statements have focused mainly on the full state reachable set rather
than the position only reachable set. We note here that the semi-axes of the ellipsoid for the position
reachable set can be obtained through a generalized eigenvalue problem derived from the method
of Lagrange multipliers applied to the following constrained optimization problem

max
δxT

f Eδxf=Emax

δrTf δrf = max
δxT

f Eδxf=Emax

δxT
f

[
I3 03
03 03

]
δxf (44)

The resulting generalized eigenvalue problem with three nonzero eigenvalues is

Ey = γ

[
I3 03
03 03

]
y (45)

where the semi-axes of the position energy-limited reachable set are then given by

αr
i =

√
Emax

γi
yr
i (46)

where yr
i denoted the position components of the eigenvector yi. Given the symmetry of the gen-

eralized eigenvalue problem, the generalized eigenvectors are orthogonal with respect to the matrix

12



on the right hand side of Eq. 45, and thus each of the position components of the eigenvectors yr
i

are mutually orthogonal.21 This proves that the position reachable set is also an ellipsoid. Note that
the eigenpairs discussed for this matrix pencil in Eq. 45 are different from those associated with the
matrix E alone. Further, note that the position reachable set described here cannot be calculated
by taking the eigendecomposition of the upper left three by three block of the matrix E, denoted
as Err. While the eigenvectors of Eq. 45 give information about the reachable set projected into
the position only subspace, the eigenvectors of Err would give information about the reachable set
subject to the constraint that the satellite arrives at its terminal condition with zero relative velocity
(a subset of the overall position reachable set).

The maximum projection of the position along a given direction δr̂f within the reachable set can
be obtained by a similar optimization yielding a generalized eigenvalue problem in terms of the
outer product of that unit vector with itself. The resulting eigenvalue problem has only one nonzero
eigenvalue due to the rank one matrix appearing on the right hand side:

Ey = γ

[
δr̂fδr̂

T
f 03

03 03

]
y (47)

The maximum projected distance of the reachable set from the origin in the direction δr̂f is then
given by √

Emax

γ
(48)

for the one nonzero eigenvalue γ, where this eigenvalue is again different from those discussed
above.

However, the maximum projection of the reachable set onto a given direction will not generally
be the magnitude of the vector on the reachable set in that direction. In order to calculate the
distance from the origin of the position reachable set in a given direction, forming the quadratic
form associated with the position reachable set is expedient. Let

E∗ =
3∑

i=1

γiy
r
i (y

r
i )

T (49)

where γi and yi are generalized eigenpairs coming from Eq. 45 and yr
i again denotes the vector con-

sisting of the first three components of yi. The magnitude of the energy-limited position reachable
set in the direction of δr̂f is given by

∥δrf∥2 =
√

Emax

δr̂Tf E
∗δr̂f

(50)

This efficient linear algebraic method for calculating the range of the reachable set in a particular
direction allows us to compare the energy-limited reachable set and thrust-limited reachable set
along a particular direction.

Thrust-Limited Reachable Set

For fuel-optimal control (neglecting mass loss over time) of a satellite relative to an arbitrary
reference trajectory, the fuel cost for some control profile u is given by

J =

∫ tf

t0

||u||dt (51)
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Relative to the energy-limited low-thrust case, computation of the more realistic thrust-limited case
is intense: Due to the non-quadratic nature of the thrust constraint, the thrust-limited relative-
reachable-set (RRS) is non-ellipsoidal and does not lend itself to as direct an analytical description
as the energy-limited case. As in the energy-limited case, thrust-limited optimal controls can be
found via application of the PMP to a system following the dynamics given by Eq. 31, however
with a different set of constraints.

Choosing δ as an arbitrary vector on the unit-sphere along which the final position is to be maxi-
mized, Gong et al.3 show that for any initial state on the reference trajectory, finding the boundary
of the thrust-limited RRS can be performed by solving the following fixed-time optimal control
problem:

maximize δ · δr(tf ) (52)

subject to
[
δr, δv

]T
(t0) = 0, ||u(t)|| ≤ Tmax,

dx

dt
= F(x) +

[
0
u

]
, δ × δr(tf ) = 0

Gong et al. show that due to convexity properties of the RRS, the constraint δ × r(tf ) = 0 can
be relaxed, simplifying the control problem and allowing for the analysis given below. Though
relaxing this constraint increases the tractability of the optimization, the resulting position vector on
the reachable envelope may no longer point in the same direction as δ.

Invoking the PMP yields the same state and co-state differential equations as in the energy-limited
case (Eqs. 31-32), however application of the constraint ||u(t)|| ≤ Tmax results in a different
expression for the control authority u in terms of the co-states. As a direct result of the the thrust-
limited constraint, the control u(t) that maximizes the Hamiltonian in the thrust-limited case is
instead such that u is in the direction of the velocity co-state vector with magnitude equal to Tmax:

u =
λv(t)

||λv(t)||
Tmax (53)

The thrust-limited co-state dynamics are as given in Eq. 32 but subject to the boundary condition

λf =
[
0, δ

]T (54)

As a direct result of the relationship between the state transition matrix and the adjoint system, the
solution to the co-state equations can be expressed in the form

λ(t) =

[
Φr

r(tf , t)
Tδ

Φr
v(tf , t)

Tδ

]
(55)

It is well known that for a general linear dynamical system with control vector u, state transition
matrix Φ, initial state x(t0), and control response B(t), the solution to the system x(t) is given by:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (56)

As a result, points in the direction δrf on the boundary of the thrust-limited RRS can be found by
substituting Eqs. 53 and 55 into Eq. 56 and then setting δr(t0) = 0 and δv(t0) = 0 as specified by
the optimization constraints given in 52 :

δrf =

∫ tf

t0

Tmax
Φr

v(tf , t)Φ
r
v(tf , t)

Tδ√
δTΦr

v(tf , t)Φ
r
v(tf , t)

Tδ
dt (57)
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We note that the initial constraint given in Gong et al. can be relaxed to yield the RRS from any
arbitrary starting state though we will only use initial states at the reference trajectory for analysis
in this work. In this case, for δx(t0) =

[
δr0, δv0

]
, a point on the boundary of the thrust-limited

RRS is given by:

δrf = Φr
rδr(t0) +Φr

vδv0 +

∫ tf

t0

Tmax
Φr

v(tf , t)Φ
r
v(tf , t)

Tδ√
δTΦr

v(tf , t)Φ
r
v(tf , t)

Tδ
dt (58)

We compute the final RRS by uniformly sampling vectors on the unit circle and then mapping them
through the relation given by Eq. 57.

Comparison Analysis

As in the impulsive and constant-thrust cases, we present analysis for the in-plane relative reach-
able sets associated with circular reference orbits. In the energy and fuel-limited case, a reasonable
energy-limit for comparison with a maximum thrust Tmax and time-of-flight ∆t is Emax = T 2

max∆t.
For this choice of Emax, the energy-constrained reachable set will be a super-set of the thrust-
constrained low-thrust reachable set for any terminal time or initial condition.

To put upper and lower bounds on the extent to which the comparable energy-limited reachable
set over-approximates the thrust-limited reachable set in any direction for a given terminal time,
we computed the thrust-limited RRS using the procedure described above, yielding a set of points
on the boundary of the thrust-limited reachable set. Next, using the energy-limited procedure out-
lined above, we computed the reachable set associated with the energy Emax = T 2

max∆t and initial
condition δx(t0) = 0. Finally, for a given vector δrf on the thrust-limited reachable set, the ratio
between the energy-limited reachable set in the direction of δrf and the thrust-limited reachable set
δrf is then given by

||δrEf ||
||δrf ||

=

Emax√
δr̂fE∗δr̂f

∥δrf∥
(59)

where δr̂f denotes the unit vector in the direction of δrf . Using this procedure, we analyzed how
the minimum and maximum ratios between the RRS changed as terminal time changed, and also
analyzed how the directions in which these minimum and maximum ratios changed over time. We
set the constants µ = 3.986 × 1014 m3

s2 and α = 7, 780 km yielding the mean-motion value of
n = 0.00092 s−1. We note that the minimum and maximum ratios between the thrust and impulsive
limited RRS as function of time of flight will be invariant of the mean motion when time of flight is
given in periods. For maneuvers lasting seconds to several minutes, we found that the comparable
energy limited reachable set over-approximates the fuel-limited reachable set by approximately 15
percent, and that the degree of over-approximation as a function of direction remained close to
uniform over this time period, as illustrated in Fig. 6. The over-approximation becomes less uniform
for longer time-of-flights such as at half and full periods as seen in Fig. 7 and Fig. 8. Figs. 9-10
show plots of metrics associated with the differences in the energy and thrust-limited RRS over time.
In Fig. 9, we show the angles (measured counterclockwise from the positive in-track axis such that
in-track is 0 radians and positive radial is π/2 radians) at which the minimum and maximum ratios
between the relative reachable sets occur, and how they vary over the course of a full orbital period
under the orbital parameters chosen above. In Fig. 10, we show the minimum and maximum ratios
themselves, and how they vary with time.
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Figure 6: 60 second RRS (km). Energy-limited over-approximation of the fuel-limited RRS is close
to uniform in all directions.

We find that the energy-limited reachable set gives a uniformly moderate overestimate of the
thrust-limited reachable set for short time of flights. As time of flight increased, we found that the
energy-limited RRS improves as an approximation for the thrust-limited reachable-set primarily in
the radial direction, while it worsened as an approximation for the thrust-limited RRS primarily
in the in-track direction. This is important, because there are parametric methods for generating
the thrust-limited reachable set, but finding the range along a particular direction is difficult, while
finding the energy-limited reachable set along a particular direction is accomplished very simply.

CONCLUSION

We began by reviewing four types of relative reachable sets under linearized dynamics as well as
their computation. We then demonstrated linear algebraic methods employing generalized eigen-
value problems to calculate metrics of interest for comparing impulsive reachable sets with constant-
thrust reachable sets to model high-thrust chemical propulsion and comparing energy-limited and
thrust-limited reachable sets to model low-thrust propulsion. In the high-thrust case, it was found
that the constant-thrust reachable set is rarely a subset and never a superset of the comparable im-
pulsive reachable set. It was also found that the centered RIC frame constant-thrust reachable set is
most similar to the impulsive reachable set. Novel analytical forms of the constant-thrust reachable
sets were presented to facilitate computations for this analysis.

In the low-thrust case, the thrust-limited reachable set is a more physically meaningful reachable
set, but can be time-consuming to compute. On the other hand, the energy-limited reachable set is
easier to compute and analyze. It is easy to see that a comparable energy-limited reachable set is
always larger than its thrust-limited counterpart. We present new analysis techniques using general-
ized eigenvalues to describe the position reachable set for an energy-limited scenario and describe
the maximum difference in the two reachable sets. We find that the energy-limited reachable set
is only ever 1.4 times as large as the thrust-limited reachable set over the course of a period for
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Figure 7: Half Period RRS (km). Energy-limited over-approximation of the fuel-limited RRS is
smaller in the radial direction than the in-track direction.

Figure 8: Full Period RRS (km). Energy-limited RRS becomes more accurate as a stand-in for
fuel-limited RRS while over-approximating in the in-track direction.

a circular reference orbit, and that along some directions, the energy-limited reachable set is only
around a factor of 1.15 times larger than the thrust-limited reachable set. These results may enable
future studies to employ the energy-limited reachable set methodology in place of the thrust-limited
reachable set methodology when this level of overconfidence–or conservativeness as the case may
be–in the reachable set is appropriate for the application.
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Figure 9: Angles at which the minimum and maximum ratios between RRS occur, as a function of
number of revolutions of the reference orbit.

Figure 10: The minimum and maximum ratios between RRS, as a function of number of revolutions
of the reference orbit.
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