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UNEXPECTED OBSERVATIONS ON THE ACCURACY OF LINEAR
COVARIANCE ANALYSIS AND TRACK ASSOCIATION

Alexandra H. Nelson; Jackson Kulik *

This paper presents two unexpected findings related to the accuracy of linear co-
variance propagation in astrodynamics. First, higher-dimensional state distribu-
tions experience a more rapid deviation from Gaussianity than lower dimensional
marginal distributions; in particular, 6-dimensional states diverge from Gaussian
behavior significantly faster than 2- or 3-dimensional states. This effect is quan-
tified, and the paper provides information on its underlying causes. Second, it
was found that increasing the initial covariance can, in some cases, reduce the
non-Gaussianity of the propagated distribution. This counterintuitive behavior is
examined in detail, and possible explanations are discussed.

INTRODUCTION

Accurately quantifying and modeling the covariance associated with a spacecraft state is crucial
in applications where a spacecraft state needs to be known precisely. This includes space domain
awareness (SDA), rendezvous proximity operations (RPO), track association, navigation filters, and
many other related applications. In these applications, non-precise covariance models can lead to
overconfidence in the spacecrafts predicted state and ultimately mission failure. This paper dis-
cusses two anomalies related to linear covariance propagation techniques. These anomalies were
studied in the context of track association, but the findings are applicable to various other scenarios.

Linear covariance propagation is a technique commonly used in spacecraft applications to prop-
agate the covariance associated with a state forward in time.! Given a mean initial state p, and
a previously known covariance P the solution to the dynamical system ¢; can be computed for
a given state x; as shown in Eq. 1 where ¢; denotes the flow map associated with the dynamical
system & = f(x).
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We denote the Jacobian ofp, evaluated at the mean initial state as the state transition matrix ® as
shown in Eq. 2.
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The state transition matrix and the initial covariance can then be used to propagate the covariance
as shown in Eq. 3.
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Since the state transition matrix gives a linear approximation of the solution flow, the covariance is
a linear approximation of the actual covariance. This approximation is appropriate for some space
applications, but introduces error. The Gaussian distribution obtained from the linear covariance
approximation may not be an accurate approximation of the true distribution.

Several previous studies quantitatively discuss how non-Gaussian the distribution becomes using
both Monte Carlo methods and analytical approaches.”™ In addition, nonlinear uncertainty propa-
gation methods have been developed to avoid the poor approximations resulting from linear covari-
ance analysis, such as the Gaussian mixture method for uncertainty propagation,® polynomial chaos
expansion,® state transition tensors,” unscented transforms,® conjugate unscented transformation,’
and differential algebra.!”

This paper discusses two unexpected findings that were observed while exploring methods to bet-
ter perform track association. The first observation was that the non-Gaussianity of the distribution
changed with the dimension of the distribution. When the full 6-dimensional state was considered,
the non-Gaussianity increased much faster than when a subset of the state variables were considered.
As a result, the non-Gaussianity manifests to different degrees in the full distribution as opposed to
lower-dimensional marginal distributions.

The second unexpected finding is that downstream non-Gaussianity did not always increase as
the initial covariance increased. If the initial uncertainty was higher, one would expect that the
non-Gaussianity of the distribution at a later time would also be higher. However, it was observed
that inflating the initial covariance in certain ways resulted in a more Gaussian distribution, and
linear covariance propagation gave better results under a number of different metrics for identifying
non-Gaussianity.

BACKGROUND
Covariance based track association with a Chi-squared test

To determine whether a d-dimensional measurement is statistically consistent with an assumed
Gaussian distribution for the spacecraft’s state, a one-sided chi-squared test can be performed. This
test evaluates the squared Mahalanobis distance D? between the measurement and the predicted
mean of the state, projected into the measurement space. The result is then compared with the
chi-squared threshold Xi 4 for a chosen significance level o and degrees of freedom d.

In this formulation, x is the measurement, g, is the predicted mean state of the spacecraft, and
P is the associated covariance. When marginal distributions are considered, the measurement and
state are projected into the relevant subspace using a matrix H, which maps the full state to the
marginal state of interest. For example, if the measurement concerns only position, H selects the
position components from the full state vector.

The Mahalanobis distance for a full state is then given by Eq. 4 and the Mahalanobis distance for
the marginal state is given by Eq. 5.
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Comparison of Mahalanobis distance and chi-squared value determines if the measurement is
consistent with a distribution.

Hypothesis Test

o If D? > FX_21 , the observation is inconsistent with the assumed distribution.
a,d

e If D% < FX}l , the observation is not inconsistent with the assumed distribution.
a,d

Where F' is the Cumulative Distribution Function (CDF).

If the measurement is consistent with the distribution, we do not reject the null hypothesis that
the measurement is associated with the given distribution. If the measurement is not consistent with
the distribution, we reject the null-hypothesis that this measurement is associated with the given
distribution.

Chi-squared tests work if the state has a multivariate normal distribution. This results in the
squared Mahalanobis distance having a chi-squared distribution. However, as the distribution be-
comes less Gaussian, the chi-squared test will pass/fail with an increasingly different ratio than that
prescribed by the chosen significance value.

In Gutierrez et al.,* the chi-squared test is utilized as a statistical measure to assess the Gaus-
sianity of propagated uncertainty distributions. Specifically, the authors use a Monte Carlo-based
Cramér-von Mises (CVM) test to evaluate how closely the distribution of Mahalanobis distances
from simulated samples conforms to a theoretical chi-squared distribution. This test provides a
scalar metric, w?, which quantifies the deviation from a true multivariate Gaussian distribution. A
threshold, derived from chi-squared confidence intervals, is then applied to determine when the
propagated state uncertainty can no longer be considered Gaussian. This threshold-based evalua-
tion allows the authors to pinpoint the transition to non-Gaussian behavior during orbit propagation.
This work does not utilize the same metric. However, the use of Monte-Carlo Chi-Squared based
methods to assess the non-Gausianity of the system was inspired by the work of Gutierrez et al.*

A Measure of Non-Gaussianity: WUSSOS

Because chi-squared tests can only indirectly assess deviations from Gaussianity, analytical mea-
sures such as WUSSOS are valuable for quantifying the sources of nonlinearity. The whitened
uncertainty-scaled second-order stretching (WUSSOS) metric is an analytical method used to quan-
tify error that results from linear covariance propagation.> WUSSOS uses a whitening transforma-
tion on the higher-order terms of the flow map. The Taylor series expansion for the flow map about
the mean can be seen in Eq. 6.
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The second-order terms of this expansion are denoted as ¥ as shown in Eq. 7.
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Then WUSSOS requires an optimization to determine the maximal error in propagating the vec-
tors on the 1-sigma initial covariance ellipsoid relative to the covariance as propagated by linear
covariance analysis. The equation for WUSSOS is shown in Eq. 8

o [l ®

where ¥x? is shorthand notation for the double contraction of the tensor using Einstein notation as
defined in Eq. 9

(Tx?)' = (®)%, xIxF )

The WUSSOS value can be used to determine the relative non-Gaussianity of the distribution over
time because it is an uncertainty scaled measure of the difference between the first and second-
order Taylor series approximations. WUSSOS values are typically computed from the full state
distribution. However, a marginal WUSSOS value can be obtained using Eq. 10, where H is a matrix
that projects the full state onto a marginal subspace. When the marginal distribution corresponds to
the position components, we refer to the resulting metric as position WUSSOS.

max ) HH\I’X2H(HPtHT)*1 (10)
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CASE STUDIES

The following case studies examine the unintuitive findings in detail, quantifying how dimen-
sionality and initial covariance influence the accuracy of linear covariance propagation.

Dimensionality

To explore the non-Gaussianity of a full state distribution as compared with a lower-dimensional
marginal distribution, we followed the procedure used by Gutierrez et. al.* to quantify non-
Gaussianity of a propagated distribution. Ten-thousand random samples were generated for the
initial state and covariance shown in Eq. 11. These initial conditions for the mean represent a
spacecraft in an equatorial circular orbit with a radius of 6678.0 km where p is the gravitational
parameter 398600.0km? /s2.

7]
0) = [6678.0km, Okm, Okm, Okm/s, \/ ———km/s, Okm/
x(0) =1 L, T >\ 66780 s (11)
P(0) = diag([0.01km, 0.01km, 0.01km, 10~%km/s, 10=Skm/s, 10~ 5km/s])

The mean state and the samples were propagated forward in time using two-body dynamics with
no perturbations. The covariance was propagated using linear covariance propagation as shown in
Eq. 3. Then, a chi-squared test associated with the distribution propagated with linear covariance
analysis was performed at each time for each propagated sample.

The chi-squared test was performed with the full state vectors as well as with projections of
the state into lower dimensions. A threshold of 98.8%, the 3-sigma bound associated with 2-
dimensional Gaussian random variable, was applied to each chi-squared test as the significance
value. Since the samples came from the initial state distribution, if the linear covariance propaga-
tion is entirely accurate in describing the distribution at later time steps and a threshold of 98.8%



is used, it is expected that approximately 98.8% of the samples will pass the chi-squared test. The
deviation in the number of propagated samples passing the chi-squared test from this anticipated
value gives a measure of the effectiveness of the linear covariance propagation and the resulting
non-Gaussianity of the true nonlinearly propagated distribution.

The results of these chi-squared tests over time are shown in Fig. 1. The marginal distributions
shown correspond to increasingly higher-dimensional projections: (z) in 1D, (x,y) in 2D, (z,y, 2)
in 3D, (z,y,z,4) in 4D, and so on, with each additional dimension incorporating another state
variable. All dimensions begin with 98.8% of the samples passing the chi-squared test and being
associated with the linear covariance distribution. As the orbit progresses, the percentage of samples
associated with the linear covariance distribution decreases. This is expected, as linear covariance
propagation becomes a poor approximation for nonlinear systems over time.
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Figure 1: Chi-Squared results for different state dimensions.

An interesting aspect of Fig. 1 is the varying rate at which the percentage of samples associated
with the mean decreases. Fig. 1 shows that linear covariance propagation provides a better approx-
imation for lower-dimensional states (2 or 3 dimensions), but the accuracy decreases as the state
dimensionality increases.

Next, various permutations of 2D states were studied (e.g.,  and y, x and z, z and z ...). The
2-dimensional case was chosen due to the in-plane motion of the orbit; if out-of-plane motion is
present, a 3-dimensional state representation might be more appropriate. The results of this study
are shown in Fig. 2. Note that only the permutations including x are shown in the graph. Other
permutations were examined, but the results were very similar, so only the x-based permutations are
shown for clarity. This study confirmed that the results in Fig. 1 were not due to a random permu-
tation of states. All 2-dimensional permutations exhibit a slower decrease in accuracy compared to
the 6-dimensional state.



100 -
80 -
ie]
3
o
Y 601
(V)]
9]
<
5
O 40+ _ 6D
& X_y
— X Z
201 — X_X_dot
—— x_y_dot k
—— x_z_dot
0 1 2 3 4 5

Number of Orbits

Figure 2: Chi-Squared results for different 2-dimensional states.Illustration Caption Goes Here

While the chi-squared results reveal how often propagated samples remain statistically consistent
with a Gaussian assumption, the WUSSOS metric provides an analytical measure of the under-
lying nonlinearity driving this behavior. To better quantify the nonlinearities in the system, the
2-dimensional and 6-dimensional WUSSOS values were computed, and can be seen in Fig. 6
for a variety of differing initial covariances including the one under study in this section. The 6-
dimensional WUSSOS values are several orders of magnitude larger than the 2-dimensional values,
indicating significantly greater nonlinearity in the full state space. Since WUSSOS quantifies the
degree of nonlinearity in the system, this result suggests that the 6-dimensional system exhibits
more pronounced uncertainty-scaled nonlinear behavior than its 2-dimensional projection. This ob-
servation is consistent with earlier findings: linear covariance propagation tends to perform better
when examining lower-dimensional marginalizations of the full state distribution.

While we are interested in the effects of perturbations to the distribution from unmodeled higher-
order terms in the Taylor series, it is illustrative to consider the effect an independent random per-
turbation instead. Consider two independent distributions such that x ~ N(0, I,), y ~ N (0, I,),
and E(xy) = 0. If the random variable z is perturbed by ey for some small parameter € then the
new variable is distributed according to z = x + ey ~ N (0, (1 + €2)1,,). Next, it can be determined
how often z is in the 99% ellipsoid of z using Eq. 12.

F3!
2 -1 X3.99 d
P <HZ|| < Fxg.gg’d) = FX(Q),gg,d (12)
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Fig. 3 shows the results of using Eq. 12 for different dimensions (i.e. 1,2, ..., 6). In this figure,
one can see that the higher dimensions fall off faster than lower dimensions. This means that a
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Figure 3: The overlap of x and z ellipsoids in different dimensions

perturbation with the same standard deviation of its marginal distributions, leads to more samples
outside of the 99% unperturbed covariance ellipsoid.

The effect described above depends only on the dimension and applies to all distributions. There
is an additional affect that is present in heteroscedastic distributions and their marginals. Fig. 4 pro-
vides an illustration of this effect. The two ellipses show how a 2D perturbation (red vector) shifts
points relative to the ellipsoid. This perturbation can be decomposed into its x- and y-components
and these components can be applied independently. The results of applying the x-component in-
dividually are shown by the bell curves on the x-axis. In the two-dimensional case, none of the
perturbed z-values remain inside the original ellipsoid, whereas in the one-dimensional cases, some
overlap persists.

These results highlight the need for caution when applying linear covariance propagation to high-
dimensional systems. When computationally feasible, this motivates the need to employ nonlin-
ear uncertainty propagation methods and associated non-Gaussian statistical tests for consistency.
Moreover, while marginal distributions may appear approximately Gaussian, the full joint distri-
bution can still exhibit significant non-Gaussianity. This may cause misleading inferences if only
marginal views are considered. Therefore, it is important to carefully consider the implications
of assessing Gaussianity in the full state distribution versus marginal distributions to determine
which is appropriate in context. Lastly, in high-dimensional tracking problems, using chi-squared-
based association tests on marginal distributions rather than the full state may improve the ability to
avoid rejecting valid track associations (reducing false negative associations beyond the chosen sig-
nificance value), particularly when the full-state distribution deviates substantially from Gaussian
assumptions.

Initial Covariance Effect on Non-Gaussianity

Surprisingly, increasing the initial covariance sometimes results in a higher percentage of samples
passing the chi-squared test, indicating that linear covariance propagation is, at times more accurate
in a sense, with higher initial uncertainties. The same methodology used in the dimensionality study
was applied to a fixed 6-dimensional mean state. This time, the marginal variance for all position
components was varied from 0.01 km? to 100.0 km? as a part of a diagonal covariance matrix and
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Figure 4: 2-Dimensional vs. 1-Dimensional perturbations

the marginal standard deviations for the velocity components were held constant at 10~%km/s. The
same graph was then produced using 2-dimensional marginal positions in the x-y plane. Both graphs
can be seen in Fig. 5

In the 6-dimensional plot, a smaller initial position variance of 0.01 km? led to inferior chi-
squared test performance compared to a 1.0 km? variance. This was an unexpected result given
the conventional assumption that smaller uncertainties produce more reliable results under linear
approximation. To further investigate, a similar analysis was performed using 2-dimensional state
projections. This helped isolate whether the effect was related to state dimensionality or a more
general property of the dynamics. The 2-dimensional plot showed that overall linear covariance
results performed as expected but at half and full orbits the higher initial position variance of 1.0
km? and 0.1 km? performed better than the 0.01 km? initial position variance.

To further explore this effect, WUSSOS values, an uncertainty scaled measure of second-order
nonlinearity, were computed for each case. The results of this study are shown in Fig. 6. The
WUSSOS plots revealed anomalous behavior at approximately half and full orbital periods, where
increased initial covariance did not correspond to higher maximum nonlinearity, contrary to expec-
tations.

First, lets explore why the 0.01, 0.1 and 1.0 variances appear in a none- intuitive order on the
6-Dimensional percent associated plot. This results from the fact that very small variance can occur
in directions where the true system dynamics are highly nonlinear. These small variances cause
nonlinearities to have a disproportionately large relative effect.

These effects can then be exaggerated when singularities appear in the STM. Previous work
discusses these singularities in a variety of different contexts.!!~!3 The singularity is the result of
the covariance, associated with the velocity, dominating and causing the covariance matrix to be
nearly singular as shown in Eq. 13.
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Figure 5: Chi-Squared results for different initial position covariances.
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Figure 6: WUSSOS plots for varying initial position covariance.
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Using the covariance from Eq. 13 and the STM shown in Eq. 14 the covariance can be found
using linear covariance propagation as shown in Eq. 15.

_ % 9
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The singularities then occur when the determinant of the upper right block of the STM, ®,
is zero. This occurs for times of flight at multiples of 27 and 1.4067, 2.4453, 3.4612, etc. These
points are where we see higher initial uncertainties performing better than lower initial uncertainties
when examining the position marginal distribution. These singularities accentuate the small initial
covariances effect on the distribution. They exaggerate the directional collapse of linear covariance
propagation and the breakdown is fundamentally due to the mismatch between assumed linearity
and actual nonlinear behavior in low-variance directions.

This result suggests that in some orbital regimes, small initial uncertainties in marginal position
may lead to deceptive confidence in the accuracy of linear propagation. The effect of singularities in
blocks of the state transition matrix need to be considered when using linear covariance propagation
with heteroscedastic initial uncertainty.

CONCLUSION

Accurate covariance propagation is critical for applications such as space domain awareness
(SDA), rendezvous proximity operations (RPO), track association, and navigation filtering. While
linear covariance propagation is sufficient in some cases, its limitations must be carefully considered
in precision-critical applications.

This work examined two key anomalies that influence covariance propagation accuracy. First,
dimensionality effects were quantified using WUSSOS and chi-squared tests, showing that high-
dimensional state distributions deviate from Gaussianity much faster than lower-dimensional marginals.
Specifically, 6-dimensional states exhibited significantly faster degradation of Gaussianity than 2-
or 3-dimensional projections. Second, initial covariance effects were analyzed, revealing that larger
initial covariances may, in some cases, lead to more Gaussian behavior downstream. This is a re-
sult of the small variance and high non-nonlinearities appearing in the same direction. When these
directions align, the small variances cause nonlinearities to have a disproportionately large rela-
tive effect. These affects can then be exaggerated by singularities in the state transition matrix.
These findings highlight the need for caution when applying linear covariance methods, especially
in high-dimensional or highly heteroscedastic scenarios.
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