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LINEAR COVARIANCE FIDELITY CHECKS AND MEASURES OF
NON-GAUSSIANITY

Jackson Kulik*, Braden Hastings†, and Keith A. LeGrand‡

Linear covariance (LinCov) techniques have gained widespread traction in the
modeling of uncertainty, including in the preliminary study of navigation perfor-
mance. While LinCov methods offer improved computational efficiency compared
to Monte Carlo based uncertainty analysis, they inherently rely on linearization as-
sumptions. As the study of navigation in Cislunar space grows, it is important to
assess the degree to which linear covariance techniques perform under higher dy-
namical nonlinearity and large state uncertainties. We present and test a number of
computational techniques for assessing linear covariance performance using tools
from higher-order statistics and constrained optimization.

INTRODUCTION

Consider a nonlinear function g : Rn → Rm that may represent the flow of a dynamical system
or a measurement function. Let x ∈ Rn random variable with mean µx and covariance Px. Lin-
ear covariance techniques rely on the following simple principle for uncertainty propagation: for
sufficiently small input covariance Px, the resulting output mean and covariance are approximately

E[z] ≈ µ(1)
z = g(µx) (1)

Pz ≈ P(1)
z = GPxG

T (2)

where the superscript “(1)” denotes that these quantities arise from linear covariance analysis and

G =
dg

dx

∣∣∣
µx

(3)

is the Jacobian of g evaluated at µx. Furthermore, if x is Gaussian-distributed, then by the same
aforementioned assumptions, z is also approximately Gaussian distributed. Often, linear covariance
techniques are employed for stochastic systems that include process noise or measurement noise.
In this work, we will examine only deterministic systems, where the dominating source of output
uncertainty is due the initial uncertainty in x.

This paper develops new methods and metrics for analyzing the quality of LinCov-estimated
quantities in nonlinear systems. The methods in this work are based primarily on calculating ex-
pectations related to linearization error or solving constrained optimization problems related to lin-
earization error. In both cases, the proposed methods leverage higher-order statistics. For multi-
variate random variables, central moments beyond order two require tensor representations. Thus,
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our constrained optimization approach leverages the theory of tensor eigenvalues and tensor op-
erator norms.1, 2 One of the most important elements of our approach is output-whitening, which
enables each output to be meaningfully interpretable as a Mahalanobis distance and is unit and
scale-invariant.

BACKGROUND

Partial Derivative Tensors

In this work, we will heavily rely on higher-order partial derivative tensors of the nonlinear func-
tion g in order to describe the higher-order terms in the Taylor series expansion of g about the mean
of µx as these will approximately describe the error in approximating g(µx+δx) by its linearization
g(µx) +Gδx. The Taylor series expansion of g about the mean µx is given by

g(µx + δx) = g(µx) +Gδx+
1

2

∂2g

∂x2

∣∣∣
µx

δx2 +O(δx3) (4)

where we define the shorthand notation above for double contraction of the tensor with two copies
of a vector in terms of the following Einstein notation (where there is a sum over any repeated
indices in an expression) (

∂2g

∂x2

∣∣∣
µx

δx2

)i

=

(
∂2g

∂x2

∣∣∣
µx

)i

j,k

δxjδxk (5)

In the following, we adopt the abbreviated notation

G(2) =
∂2g

∂x2

∣∣∣
µx

(6)

to denote the second-order partial derivative tensor. We will primarily be concerned with partial
derivatives associated with the flow of a dynamical system. The partial derivatives of the flow of
a dynamical system are known as state transition tensors and can be computed by deriving and
integrating variational equations associated with the dynamical system3 or by using differential
algebra techniques.4

Whitening and Mahalanobis Distance

Given a random variable x and its covariance matrix var(x) = P, a whitening transform is
defined by any transformation

y = Wx (7)

such that y is the same dimension of of x and the “whitened” covariance matrix var(y) = I . It
is straightforward to show that the inverse of any square root factor W = P−1/2, where P =
P1/2(P1/2)T provides a whitening transformation. A convenient property of the the whitened vec-
tor y is that its 2-norm is equal to the Mahalanobis distance in the original space:√

yTy =
√
xTP−1x (8)
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Moments

Denote the linearly propagated distribution of x by

z(1) = g(µx) +G(x− µx) (9)

The statistics of z(1) are described completely by the mean and covariance in Eqs. (1) and (2),
respectively. The third-order central moments of this Gaussian distribution along any direction are
zero, so

(S(1)
z )i,j,k = E[(z(1) − µ(1)

z )i(z(1) − µ(1)
z )j(z(1) − µ(1)

z )k] = 0 (10)

In general, the standardized third-order central moment–known as skewness–of a distribution is
given by the third-order central moment of the random variable that results from whitening the
original random variable

Σi,j,k = (P−1/2)ii′(P
−1/2)jj′(P

−1/2)kk′S
i′,j′,k′ (11)

this is also zero in the case of z(1). The fourth order central moment tensor of z(1) is defined as

(K(1)
z )i,j,k,l = E[(z(1) − µ(1)

z )i(z(1) − µ(1)
z )j(z(1) − µ(1)

z )k)(z(1) − µ(1)
z )l] (12)

= (P(1)
z )i,j(P(1)

z )k,l + (P(1)
z )i,k(P(1)

z )j,l + (P(1)
z )i,l(P(1)

z )j,k (13)

= sym
(
3(P(1)

z )i,j(P(1)
z )k,l

)
(14)

where the second equality known as Isserlis’ theorem can be obtained via the joint characteristic
function3, 5 or by way of a symmetry argument, inverse whitening transformation, and by counting
the number of pairs that can be selected from four indices. The sym operator denotes averaging the
tensor over all permutations of the indices to symmetrize the tensor

sym(T)i1,...,im =
1

m!

∑
σ∈Sm

Tσ(i1,...,im) (15)

The standardized fourth order central moment tensor or kurtosis tensor is obtained by applying
a whitening transformation to z(1) and taking the fourth central moment of the resulting random
variable:

(κ(1)
z )i,j,k,l = ((P(1)

z )−1/2)ii′((P
(1)
z )−1/2)jj′((P

(1)
z )−1/2)kk′((P

(1)
z )−1/2)ll′(K

(1)
z )i

′,j′,k′,l′ = 3(I(4)m )i,j,k,l

(16)
where I

(4)
m is the fourth-order, m-dimensional identity tensor6, 7 such that

I(4)m ξ3 = ξ and I(4)m ξ4 = 1 (17)

for all ξ ∈ Rm such that ∥ξ∥2 = 1. The relationship between the Gaussian kurtosis and the identity
tensor is a novel observation as far as the authors are aware. We defien the excess kurtosis tensor as
the difference between the kurtosis κ of some distribution and the kurtosis of a Gaussian distribution
of the same dimension. That is,

δκ = κ− 3I(4) (18)

The skewness and kurtosis tensors as defined here are the central moments of the whitened random
variable y such that

(y − µy) = P−1/2
x (x− µx) (19)
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where x is the original random variable under consideration. Note that an mth-order central mo-
ment tensor that is not standardized (such as S) can be used to find the corresponding mth-order
central moment of a marginal distribution along any particular direction (such as the skewness of
the marginal distribution along v̂) by contraction m times with a unit vector along that direction. On
the other hand, repeated contraction along a particular direction of the standardized central moment
tensors (skewness Σ and kurtosis κ) does not necessarily result in the standardized skewness and
kurtosis of the marginal distribution under contraction. For example,

Σi,j,kv̂iv̂jv̂k ̸= Si,j,kv̂iv̂jv̂k

(v̂TPv̂)3/2
=

E[(v̂T (x− µ)]3

σ3
v̂

(20)

where σv̂ is the standard deviation of the marginal distribution along an arbitrary unit vector v̂.
Special cases in which the two expressions are equivalent include when the distribution is a ho-
moscedastic multivariate Gaussian and when the distribution is a multivariate Gaussian marginal-
ized such that v̂ is along one of the principal axes of the associated covariance ellipsoid. This is all
to say that one must be careful not to conflate the standardized skewness tensor contracted along
a particular direction with the marginal skewness along that direction. Instead, the standardized
skewness tensor contracted along a particular direction should be interpreted as the skewness of the
marginal distribution in the given direction of the whitened random variable.

Tensor Eigenvalues

Given an mth-order supersymmetric (symmetric under any permutation of the indices) covariant
tensor (a multilinear functional that operates on m vectors to produce a scalar value) T, consider
the following constrained optimization problem:

max
∥x∥2=1

Ti1,...,imx
i1 ...xim (21)

The method of Lagrange multipliers may be applied to this constrained optimization to yield the
following conditions for optimality:

Txm−1 = λx (22)

∥x∥2 = 1 (23)

The above equations define a z-eigenvalue and eigenvector pair. The theory8, 9 behind tensor z-
eigenvalues and their computation6, 10 has recently been adopted by the astrodynamics community
to study nonlinearity and to quantify the error associated with linear methods for guidance, naviga-
tion, and control.1, 2, 11 In order to calculate the maximal z-eigenvector pair, an algorithm known as
shifted higher-order power iteration may be employed. Shifted higher-order power iteration is a gen-
eralization of shifted power iteration for finding eigenvalues of symmetric matrices. The algorithm
is described by the iteration

x(k+1) =
Txm−1

(k) + αx(k)

∥Txm−1
(k) + αx(k)∥2

(24)

where the subscript (k) indicates the kth iterate of the algorithm and α is chosen to ensure global
convergence of the algorithm to an eigenpair of the tensor T. We use the notation Txm−1 as
shorthand for the the following operation that produces a vector

(Txm−1)i1 = Ti1,i2,...,imx
i2 ...xim (25)
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The shift parameter α must be chosen to be larger than the order of the tensor minus one multiplied
with the spectral radius of the matrix resulting from contracting all but 2 of the indices of the tensor
with any vector on the unit sphere:

α > (m− 1) max
∥x∥2=1

ρ(Txm−2) (26)

One simple method to compute a sufficient shifting factor α is given by the sum of the absolute
values of the entries of the tensor6

α = (m− 1)
∑

i1,...,im

|Ti1,...,im | (27)

This algorithm will converge regardless of the initial guess for the eigenvector, and will tend to
converge to eigenpairs with the largest eigenvalues, though is not guaranteed to converge to the
eigenpair with the largest eigenvalue from every initial guess. As such, if there is not a good method
for generating an initial guess at the eigenvector corresponding to the largest eigenvalue, then the
algorithm should be run with a number of random initial guesses.

BASELINE MONTE CARLO APPROACHES

First, we will review a number of baseline metrics that we can employ using Monte Carlo based
techniques. These will not be the most efficient, and performing a Monte Carlo defeats the purpose
of using linear covariance analysis in the first place. However, these metrics will offer a standard for
comparison against with the more computationally efficient methods proposed here. By sampling
the initial Gaussian distribution p(x) and propagating each sample through the nonlinear function g
we can obtain samples of the distribution of z = g(x). We denote samples of the final distribution
by

z(i) = g(x(i)) (28)

for i from 1 to N where {x(i)}Ni=1 ∼ p(x). With samples of the final distribution we can compare
against the linearly propagated distribution of

z(1) = g(µx) +G(x− µx) (29)

Differences and Ratios of Moments As a simple test, we can examine the moments of the true
random variable z and the linearly propagated random variable z(1). The absolute difference be-
tween the two means can be taken as a metric of interest, or can be normalized to a squared Maha-
lanobis distance according to

(µ(MC)
z − µ(1)

z )T (P(1)
z )−1(µ(MC)

z − µ(1)
z ) (30)

This is depicted in Fig. 1. The concept of moment comparison can be extended to the second
moments. The minimum and maximum values of the generalized Rayleigh quotient

ζT (P(1))−1ζ

ζT (P(MC))−1ζ
(31)

can be employed to assess the difference between the two distributions. This generalized Rayleigh
quotient can be interpreted as the minimal/maximal linear covariance Mahalanobis distance of the
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Figure 1. Notional depiction of the contours of equal Mahalanobis distance with a
difference in two means superimposed.

1-sigma contour of the Gaussian fitted from the sample mean and covariance of the distribution. The
minimum and maximum values of this generalized Rayleigh quotient can be calculated by solving
the generalized eigenvalue problem with

(P(1))−1ζ = λ(P(MC))−1ζ (32)

and finding the minimum and maximum eigenvalue which will give the minimum and maximum
ratios. Finally, the sample skewness ΣMC from Eq. (11) and excess sample kurtosis κMC from
Eq. (18) can be employed as measures of non-Gaussianity. We will present more analysis of the
generalized eigenvalues of the precision matrices and on the skewness and kurtosis tensors in the
next section where take an analytical approach to approximating the moments of the distribution to
second-order.

Expected Squared Mahalanobis Distance of True Distribution The expected squared Mahalanobis
distance of a random variable ζ with respect to the linearly propagated mean and covariance is

ESMDg,x = E[(ζ − µ(1)
z )T (P(1))−1(ζ − µ(1)

z )] (33)

Given the uniformly weighted samples {ζ(i)}Ni=1, the empirical expectation is found via

ESMDMC
g,x =

1

N

∑
i

(ζ(i) − µ(1)
z )T (P(1))−1(ζ(i) − µ(1)

z ) (34)

Using the samples z(i) gives an approximation of the expectation of the squared Mahalanobis dis-
tance of the true distribution. If the true distribution is close to the linearly propagated distribution,
then the expected squared Mahalanobis distance should be given by m, the dimension of z, which
is the expectation of a Chi-square random variable with m degrees of freedom. Eq. 33 can also be
written in tensor notation

ESMDg,x = E[(P(1))−1
ij (ζ − µ(1)

z )j(ζ − µ(1)
z )i] (35)

Because (P(1))−1
ij is constant, we can pull it outside the expectation

ESMDg,x = (P(1))−1
ij E[(ζ − µ(1)

z )j(ζ − µ(1)
z )i] (36)

= (P(1))−1
ij E[(ζ − µζ + µζ − µ(1)

z )i(ζ − µζ + µζ − µ(1)
z )j ]

= (P(1))−1
ij (Pij

ζ + δµjδµi)
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Figure 2. Notional depiction of two distributions with distinct means and covariance ellipsoids.

where δµ = µζ − µ
(1)
z . The first expression above can be reformulated in the notation of matrix

algebra as follows

(P(1))−1
ij (Pζ)

ij = Tr((P(1))−1Pζ) (37)

Thus,

ESMDg,x = Tr((P(1))−1Pζ) + δµT (P(1))−1δµ (38)

and this can be computed from samples by directly employing the sample covariance and the dif-
ference between the sample mean and the propagated mean. The separation of the two terms in
the equation above provides insight into the effects of the difference in means on the expected Ma-
halanobis distance and the effects of the difference in distribution about the respective means. The
Tr((P(1))−1Pζ) term in the equation above can be interpreted as the expected Mahalanobis distance
if the means of the random variable and the linear propagation are the same. The δµT (P(1))−1δµ
term is the expected Mahalanobis distance from the difference in means between the true random
variable and the linear propagation. In Fig. 2, the two different effects accounted for in expected
squared Mahalanobis distance are displayed: a difference in means and a difference in covariances.
It is worth noting that the expected squared Mahalanobis distance contains many of the terms present
in the Kullback-Leibler divergence of two Gaussian random variables, missing only a constant term
subtracting the dimension of the Gaussian random variables and another adding the logarithm of the
ratios of the determinants of the two distributions.

Expected Squared Mahalanobis Distance of Linearization Error The linear prediction from any
given input data point x(i) is

z
(1)
(i) = z(1)(x(i)) = g(µx) +G(x(i) − µx) (39)

and the linearization error for that sample is

δz(i) = z
(MC)
(i) − z

(1)
(i) (40)

so the expectation of the squared Mahalanobis distance of the linearization error is approximated by

ESMDoLEMC
g,x =

1

N

∑
i

(δz(i))
T (P(1))−1δz(i) (41)
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Expectation-Based Analytical Approaches

Expected Squared Mahalanobis Distance of Linearization Error Let

δx = x− µx (42)

The error in the approximation of g(x) with g(µx) + Gδx will be dominated by a second-order
contribution assuming δx is sufficiently small. This second-order contribution is given by the second
term in the Taylor series

g(µx + x) ≈ g(µx) +Gδx+
1

2
G(2)δx2 (43)

where

G(2) =
∂2g

∂x2

∣∣∣
µx

(44)

and the double contraction in shorthand is explicitly in Einstein notation

(G(2)δx2)i = (G(2))ij,kδx
jδxk (45)

The squared Mahalanobis distance in terms of the final linearized covariance prediction of the lin-
earization error is then

1

4
((P(1)

z )−1)i1,i2(G
(2))i1j1,k1δx

j1δxk1(G(2))i2j2,k2δx
j2δxk2 (46)

which has expectation (Expected Squared Mahalanobis Distance of Linearization Error) given by

ESMDoLEg,x =
1

4
((P(1)

z )−1)i1,i2(G
(2))i1j1,j2(G

(2))i2j3,j4(Kx)
j1,j2,j3,j4 (47)

where Kx is the fourth-order central moment tensor for the Gaussian random variable x. This is
given in terms of the covariance of the random variable x as

(Kx)
j1,j2,j3,j4 = E[δxj1δxj2δxj3δxj4 ] (48)

= sym
(
3(Px)

j1,j2(Px)
j3,j4

)
(49)

Maximal Ratio Between First- and Second-Order Covariance Ellipsoids The covariance of the
random variable z as determined up to a linear approximation of the function g is given by

P(1)
z = GPxG

T (50)

An approximation of the covariance matrix up to second-order is given by3

(P(2)
z )i1,i2 = (GPxG

T )i1,i2 +
1

4
(G(2))i1j1,j2(G

(2))i2j3,j4(Kx)
j1,j2,j3,j4 (51)

We may examine the ratio of equal likelihood covariance ellipsoids along a given direction using
the generalized Rayleigh quotient

ζT (P
(1)
z )−1ζ

ζT (P
(2)
z )−1ζ

(52)
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Figure 3. Notional depiction of minimal and maximal ratios of two ellipses. Note that
the two directions are not orthogonal.

The generalized Rayleigh quotient is minimized or maximized by solving the generalized eigenvalue
problem with

(P(1)
z )−1ζ = λ(P(2)

z )−1ζ (53)

and finding the minimum and maximum eigenvalue which correspond to these minimum and max-
imum ratios. Again, this can be interpreted as giving the maximum and minimum P(1) based
Mahalanobis distance of the 1-sigma ellipsoid based on P(1). A notional depiction of the mini-
mal and maximal ratio directions of two ellipsoids is shown in Fig. 3. Note that the eigenvalues
of the pair

(
(P

(1)
z )−1, (P

(2)
z )−1

)
are the same as the eigenvalues of the pair

(
P

(2)
z ,P

(1)
z

)
. Thus,

the maximum/reciprocal minimum ratios of the precisions are the same as the maximum/reciprocal
minimum ratios of the variances along any direction. Computing the generalized eigenvalues of
the covariance matrices is more numerically stable and efficient than computing inverses and then
computing the generalized eigenvalues of these.

Expected Mahalanobis Distance Between Linear and Higher-Order Models Similar to the anal-
ysis done with the expected squared Mahalanobis Distance of the true distribution, the expected
squared Mahalanobis Distance can be approximated comparing the linear propagation of the mean
and covariance with the second-order propagation of the mean and covariance. The second-order
mean is calculated as the expectation of Eq. (43) as(

µ(2)
z

)i
= g(µx)

i + (δµ(2)
z )i (54)

where
(δµ(2)

z )i =
1

2

(
G(2)

)i

j,k
(Px)

j,k (55)

and the second-order covariance is calculated using Eq. (51). Once these values have been calcu-
lated, the expected squared Mahalanobis Distance can be found using Eq. (38), where the true mean
and covariance in the equation, which were found using a Monte Carlo simulation, are replaced by
the second-order propagated mean and covariance. This second-order approximation of the mean
can also be compared to the first-order approximation of the mean using a linear covariance Maha-
lanobis distance as described in Eq. (30).

Maximal Normalized Skewness and Kurtosis Analysis Computing a second- or higher-order ap-
proximation of the skewness and kurtosis of z can be accomplished using partial derivative ten-
sors.12, 13 Up to second-order in the approximation of the nonlinear function g, we have that the
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central third-order moment tensor is given

(S(2)
z )i,j,k =

1

2
(Gi

l1G
j
l2
(G(2))kl3,l4 +Gi

l1G
k
l2(G

(2))jl3,l4 +Gj
l1
Gk

l2(G
(2))il3,l4)(Kx)

l1,l2,l3,l4 (56)

+
1

8
Gi

l1,l2G
j
l3,l4

Gk
l5,l6(K

[6]
x )l1,...,l6 − 3sym((P(2)

z )i,j(δµ(2)
z )k) + 2(δµ(2)

z )i(δµ(2)
z )j(δµ(2)

z )k

because the third-order central moments of x are all zero. The notation K[2M ] denotes the even
2M -th order central moment tensor (generalizing the 4th order moment tensor K). The central
fourth-order moment tensor up to second-order is given by

(K(2)
z )i,j,k,l = Gi

q1G
j
q2G

k
q3G

l
q4(Kx)

q1,q2,q3,q4 (57)

+
1

4

(
4

2

)
sym((G(2))iq1,q2(G

(2))jq3,q4G
k
q5G

l
q6(K

[6]
x )q1,...,q6)

+
1

16
(G(2))iq1,q2(G

(2))jq3,q4(G
(2))kq5,q6(G

(2))lq7,q8(K
[8]
x )q1,...,q8 − 4sym((S(2)

z )i,j,k)(δµ(2)
z )l)

+ 6sym((P(2)
z )i,j(δµ(2)

z )k(δµ(2)
z )l)− 3(δµ(2)

z )i(δµ(2)
z )j(δµ(2)

z )k(δµ(2)
z )l

where the coefficient of the second term is “4 choose 2” which is equal to 6, the symmetrization
of a tensor is given in terms of the average over all permutations of the indices (though if there are
underlying symmetries, the sum need not be computed over all permutations if the normalization
factor is adjusted)

sym(Ti1...iN ) =
1

N !

∑
σ∈SN

Tσ(i1,...,iN ) (58)

and the even higher-order central moments of a Gaussian distribution are given in terms of the
covariance as

(K[2M ])i1,...,i2M =
(2M)!

2M (M)!
sym(Pi1,i2 ...Pi2M−1,i2M ) (59)

where the constant out front is the number of ways to partition a set of 2M objects into pairs when
order does not matter. The normalized central-moment tensors can be calculated by applying the
whitening transformation to each index of the central-moment tensor where the whitening transfor-
mation is given by the inverse matrix square root of the second-order approximation of the covari-
ance. Once these tensors are calculated, a constrained optimization problem may be solved in order
to find the maximal skewness and excess kurtosis of any marginal of the whitened transformation
of the random variable representing the second-order approximation z(2).

max
∥x∥2=1

T i1,...,iNxi1 ...xiN (60)

This maximal skewness or excess kurtosis of the whitened second-order approximation is a measure
of the non-Gaussianity of the distribution. In Fig. 4, we show three distribution which serve as a
reference for the meaning in the magnitude of the normalized skewness and excess normalized
kurtosis.

Optimization-Based Analytical Approaches

In previous work, constrained optimization-based methods were employed to determine the need
for and direction of Gaussian mixture splitting in the context of nonlinear uncertainty propagation.14

We summarize a few of the methods used in that work that provide the most easily interpretable
metrics associated with the performance of linear covariance propagation.
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Figure 4. The normalized skewness and kurtosis of three common distributions as
reference to interpret skewness values in terms of the asymmetry of the distribution
and kurtosis values in terms of the heavy-tailedness of the distribution.

Approx.
Linearization
Error

Whitened
Approx.
Linearization
Error

Figure 5. A schematic describing the quantity being maximized in computing WUSSOS.

Maximal Mahalanobis Distance of 1-sigma Linearization Error The whitened uncertainty-scaled
second-order stretching (WUSSOS) heuristic

max
xTP−1

x x=1
∥G(2)x2∥P−1

z
(61)

combines nonlinearity, uncertainty, and output whitening to characterize the effectiveness of linear
uncertainty propagation.14 WUSSOS gives the maximum Mahalanobis distance (induced by the
linearly propagated covariance) of the second-order approximation of the linearization error for any
initial point on a surface of equal likelihood in the input space. In Fig. 5, we sketch the surface over
which the maximum distance from the origin is optimized to arrive at WUSSOS. The WUSSOS
optimization problem can be rephrased in a manner computable as a maximal Z-eigenvector with
shifted symmetric higher-order power iteration as

max
yTy=1

(G(2)(P1/2
x y)2)TP−1

z (G(2)(P1/2
x y)2) (62)

The relevant fourth-order tensor whose square-rooted maximum Z-eigenvalue gives WUSSOS can
be written

Wi1,i2,i3,i4 =
(
P−1

z

)
j1,j2

(
G(2)

)j1

k1,k2

(
G(2)

)j2

k3,k4

(
P1/2

x

)k1

i1
...
(
P1/2

x

)k4

i4
(63)
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Relaxation of Maximal Mahalanobis Distance of 1-sigma Linearization Error Tuggle and Zanetti15, 16

first introduced a Gaussian mixture splitting method that employed nonlinear function properties
and uncertainty scaling to arrive at the following optimization to select a splitting direction

x̂∗ ∼ argmax
xTP−1

x x=1

∥G(2)x∥F (64)

where the subscript F denotes the Frobenius norm and G(2)x denotes the matrix with components(
G(2)x

)i

j
= (G(2))ij,kx

k (65)

which describes a linear approximation of how the Jacobian of g changes as it is evaluated at a point
x away from the current point it is being evaluated at. This splitting direction and the associated
metric can be calculated using a generalized eigenvalue problem with the two matrices (Ḡ(2),P−1

x )

or with the singular value decomposition of Ḡ(2)P
1/2
x where the mn by n matricization of the tensor

G(2) is
(Ḡ(2))ni+j

k = (G(2))ij,k (66)

In our previous work,14 we established a scale invariance for this metric and selection criterion by
transforming the linear transformation given by the matrix G(2)x so that it maps from a whitened
input space to a whitened output space. For completeness, we summarize this process here. The
input whitening transformation is given by

x′ = P−1/2
x x (67)

and the whitening transformation for the output space is given by

z′ = P−1/2
z z (68)

A generic linear transformation A from the original input space to the original output space can be
transformed to a linear transformation from the whitened input space to the whitened output space
according to

A′ = P−1/2
z AP1/2

x (69)

If we apply this transformation to the linear transformation given by the matrix G(2)x, we obtain a
linear transformation given by the matrix

P−1/2
z (G(2)x)P1/2

x (70)

whose squared Frobenius norm will characterize the change in the linear approximation of the non-
linear function g (normalized to map between whitened input and output spaces) at a step x away
from the current point of linearization. In order to assess whether the change in this whitened
linearization is significant we should compare against the squared Frobenius norm of the original
linearization between whitened spaces. If the original linear transformation is A = G and both
Px,Pz are nonsingular, then the corresponding linear transformation between whitened spaces G′

is a linear transformation from the unit sphere in n dimensions (the dimension of the domain of g) to
the unit sphere in m dimensions (the dimension of the codomain of g). Thus, G′ depicted in Fig. 6
is an orthogonal matrix. Note that since the eigenvalues of an orthogonal matrix only take values

12



Figure 6. A schematic describing the reference transformation for comparison with
the transformations being optimized in WUSSOLC.

−1, 0, and 1, the rank of the matrix gives the number of nonzero eiegnvalues, and the Frobenius
norm of G′ is given by the sum of squares of the eigenvalues

∥G′∥2F = min(n,m) (71)

As such, the squared Frobenius norm of the whitened change in the linearization given by G(2)x
can naturally be compared to min(n,m). If this value is small relative to min(n,m), then the
linearization at a point x away from the mean would propagate the initial covariance ellipsoid to
a final covariance ellipsoid that is very similar. The resulting whitened uncertainty-scaled second-
order linearization change (WUSSOLC) metric

max
xTP−1

x x=1
∥P−1/2

z (G(2)x)P1/2
x ∥2F = max

yTy=1
∥P−1/2

z (G(2)(P1/2
x y)))P1/2

x ∥2F (72)

can be compared to min(n,m) as a measure of the maximal normalized change in the linearization
over the 1-σ covariance ellipsoid. Note that this metric corresponds to the induced (Frobenius, 2)-
norm of the same tensor of which WUSSOS is the induced 2-norm. See previous work on tensor
norms for details on the relationship between the induced 2-norm of a tensor and the induced (Frobe-
nius, 2)-norm of a tensor and the inequality between the two.2 In order to compute WUSSOLC most
simply, compute the tensor

(G(2)
w )ij,k = (P−1/2

z )il(G
(2))lp,q(P

1/2
x )pj (P

1/2
x )qk (73)

and its mn by n matricization
(Ḡ(2)

w )ni+j
k = (G(2)

w )ij,k (74)

from which we can write the WUSSOLC metric as

max
yTy=1

∥Ḡ(2)
w y∥22 (75)

which is simply the maximal singular value of the matrix Ḡ
(2)
w .
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APPLICATIONS

In this section, we test the aforementioned methods in an analysis involving the proposed NASA
Gateway Near Rectilinear Halo Orbit (NRHO). An initial Gaussian state uncertainty is assumed,
and the distribution is propagated using linear covariance techniques over the course of an orbit.
Over that period, we compare the proposed analytic metrics with Monte Carlo based metrics to
assess their accuracy and ultimate ability to identify divergent LinCov results.

THREE-BODY MOTION

For simplicity, we adopt the circular three-body problem assumptions. The corresponding equa-
tions of motion expressed in the synodic frame are

d

dt
x = F(x) (76)

F(x) =
[
ẋ ẏ ż 2ẏ + ∂U

∂x −2ẋ+ ∂U
∂y

∂U
∂z

]T
(77)

where U(x, y, z) =
1− µ∗

||r1||
+

µ∗

||r2||
+
x2 + y2

2
is the effective potential and the mass ratio is defined

as µ∗ =
m2

m1 +m2
for the two primary bodies with masses m1,m2 respectively. We adopt the

convention that the primary body with greater mass is assigned the index 1 so that m1 ≥ m2. Both
masses lie on the x-axis at [−µ∗, 0, 0] and [1− µ∗, 0, 0] with respect to their common barycenter at
the origin. The positions of the satellite of interest with respect to the primary and secondary bodies
are denoted by r1 and r2 respectively.17

The reference orbit used in the following sections is a 9:2 resonant Southern L2 halo orbit like that
proposed for the NASA Gateway18 and shown in Figure 8. These initial conditions were obtained
as a canonical unit conversion of the initial conditions used in the QIST model of Gateway.19 The
initial conditions (coinciding with apolune) and mass parameter used for the orbit are

µ = 1.0/(81.30059 + 1.0), x0 = 1.022022,

z0 = −0.182097, ẏ0 = −0.103256

in nondimensional units with other initial coordinates equal to zero.

The period of the orbit is approximately 1.511111 [TU] where

2π[TU] = 2.361 · 106 [sec] (78)

In this example, the nonlinear function g in question is the flow of the circular restricted three-
body dynamics φt for some fixed value of the time-of-flight t. The flow map associated with the
dynamical system in (77) is defined such that(

d

dτ
φτ (x0)

) ∣∣∣∣
τ=t

= F(φt(x0)), φ0(x0) = x0 (79)

The Jacobian and the second-order partial derivative tensor of the flow map around some reference
trajectory are the state transition matrix and the second-order state transition tensor, respectively.
These quantities are obtained by integrating the variational equations,3 or by employing techniques
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Figure 7. Scatter plot of Monte Carlo samples at reference orbit perilune in the x-y plane.

from differential algebra.4 While repeated computation of state transition tensors can be costly,
techniques exist for precomputing them offline along a known reference trajectory and then effi-
ciently interpolating the state transition tensors online.19–21 Other efficient approaches are available
that leverage the potential low-rank qualities of the state transition tensors.22–24

In this example, we employ an initial Gaussian distribution with mean equal to the Gateway-like
initial conditions and covariance given by

Px = 10−8diag([1, 0, 1, 0, 0, 0]) + 10−10I6 (80)

in nondimensional canonical units. The 1-sigma distances are on the order of 40 [km] along the
x and z directions, 4 [km] along the y direction, and 0.01 [m/s] in each velocity direction. This
covariance is designed to be non-isotropic and to highlight the significant non-Gaussianity of the
propagated distribution. This non-Gaussianity is evident in Fig. 7, which shows the x-y marginal
distribution at perilune, one half period after the initial distribution epoch. All of the Monte Carlo-
based metrics in this paper are computed using 10,000 samples propagated with the Circular Re-
stricted Three-Body dynamics.

Figure 8. Full NRHO considered in three-body uncertainty propagation application.

A number of orbits in the Earth-Moon Circular Restricted Three-Body problem were consid-
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ered in a similar study using the Tensor Eigenpair Measure of Nonlinearity (TEMoN) as a flag for
when uncertainty propagation leads to non-Gaussianity of uncertainty.25 Our work has a similar
purpose but each method directly incorporates initial uncertainty and function nonlinearity to pro-
vide wholistic metrics rather than correlating distribution independent measures of nonlinearity with
measures of non-Gaussianity to try to use one as a proxy for the other.

Results

In all of the following results for each metric, we see that each measure of the quality of the linear
covariance propagation degrades extremely for propagation from apolune to near perilune. This
matches results on the related nonlinearity index.1, 2 In Fig. 9, the expected squared Mahalanobis
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Figure 9. The expected squared Mahalanobis distance relative to the nonlinearly
propagated mean and linear covariance.
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Figure 10. The expected squared Mahalanobis distance of the linearization error
with respect to the linear covariance.

distance begins at a value of six. Six is the mean of a chi-square distribution with six degrees
of freedom and the squared Mahalanobis distance of the initial distribution follows a chi-square
distribution with six degrees of freedom. Except between 0.6 and 0.9 nondimensional time units,
the expected squared Mahalanobis distance stays below a value of seven. Over the same time
interval, the expected square Mahalanobis distance of the linearization error in Fig. 10 stays below
unity, though it begins at zero instead of six. The squared Mahalanobis distance of the difference
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Figure 11. The squared Mahalanobis distance of the nonlinearly propagated mean
and another higher-fidelity approximation of the mean.

in the mean propagated versus the mean of the propagated distribution is given in Fig. 11. Here,
the Monte Carlo based approach does not start at zero like the analytical approach. This is because
the mean of the initial samples from the original distribution will not be exactly the mean of the
distribution. By the end of the period, the value settles to around 0.1 which is lower than the value
around 0.25 that is approached by the expected squared Mahalanobis distance of the linearization
error. This is expected since Jenson’s inequality guarantees an inequality between the two metrics.
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Figure 12. The maximum ratio between the linear variance and a higher-fidelity
approximation of the variance in any direction.

The maximum covariance ratio depicted in Fig. 12 begins at a value of one, settles at the end
of the period to around 1.25 and 1.15 for the second-order and Monte Carlo estimates respectively.
This metric shows more disagreement between the two methods than the other expectation-based
metrics. It is also noteworthy that the shape of the graph is very similar to that of the expected
squared Mahalanobis distance in Fig. 9. This is because the trace expression in Eq. 38 is equal to
the sum of the generalized eigenvalues from Eq. 32 of which the maximum (or the reciprocal of the
minimum) is employed as the maximum covariance ratio.

In Fig. 13, both WUSSOS and WUSSOLC begin at zero and settle to a value around 0.5 by
the end of a single orbit. As noted in,2, 14 the WUSSOLC metric will always be greater than the
WUSSOS metric, however in this case, the two stay consistently within a difference of a few percent
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Figure 13. The maximum uncertainty scaled nonlinearity.

between one another. Finally, in Fig. 14 and Fig. 15, the Monte Carlo results and the second-order
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Figure 14. The maximal normalized skewness.
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Figure 15. The maximum excess normalized kurtosis

analytical results are significantly different, though they both flag non-Gaussianity around the same
time. In both instances of the Monte Carlo, we see that the sample skewness and kurtosis of the
initial distribution is nonzero. This effect dominates the skewness and kurtosis metrics for the
Monte Carlo until around a quarter of the orbit. Computation of the skewness and kurtosis tensors
is generally more costly than the WUSSOS and WUSSOLC measures. Thus, the WUSSOS and
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WUSSOLC measures offer an accurate albeit indirect indication of non-Gaussianity at a fraction of
the computational cost of the direct skewness and kurtosis measures. The additional computational
penalty of the second-order kurtosis stems from additional required shifted symmetric higher-order
power iterations, and, in some cases, a maximal eigenvector was not found within one thousand
iterations and ten random initializations for time-of-flight below one quarter of the period. We
speculate that this is as a result of the small gap between eigenvalues of the nearly zero kurtosis
tensor during that time. Convergence of power iteration type algorithms tends to depend on the size
of the difference between the largest and next largest eigenvalue. All this goes to show that looking
directly at the higher-order moments of the distribution may be the least consistent, interpretable,
and efficient method for quantifying non-Gaussianity of those metrics proposed in this paper.

CONCLUSION

We have presented a number of interpretable metrics based on second-order partial derivatives for
assessing the error in using linear covariance propagation through nonlinear functions. All metrics
presented similar trends when employed in the context of Cislunar astrodynamics uncertainty prop-
agation problem. Those methods which have a Monte Carlo/sampling based equivalent (besides the
maximum skewness and kurtosis characterizations), all matched the sampling based method well in
the example considered. As the scale of initial uncertainty increases, second-order models of the
nonlinear function may not accurately capture the true sampling based equivalents, but should still
function as an appropriate warning when linear covariance analysis is failing to accurately describe
the true distribution. These second-order validation methods are light-weight when compared with
Monte Carlo-based approaches especially if the second-order partial derivatives can be calculated
efficiently or precomputed and accessed efficiently. Finally, we have seen that of the methods dis-
cussed, the higher-order moment-based approaches have tended to be orders of magnitude slower to
compute as compared with the other methods discussed. Additionally, the second-order approxima-
tion is not sufficient to match the Monte Carlo approach well, and third-order partial derivatives of
the nonlinear function may be necessary for skewness analysis while fourth-order partial derivatives
may be necessary for kurtosis analysis. While we initially considered higher-order moment analysis
as one of the most natural directions to determine non-Gaussianity and thus ineffectiveness of linear
covariance analysis, without significant advances, we believe these to be less effective methods than
those that more directly consider uncertainty-weighted measures of nonlinearity.

In future work we plan to more precisely characterize the timing results for these algorithms, as
well as present sigma-point based variations on these ideas. We also intend to use some of these
metrics to understand the transition to non-Gaussianity and ineffectiveness of linear covariance
techniques across an NRHO more broadly rather than always beginning the propagation at apolune.
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